Solutions

1. <u>Method 1</u>: Represent the four numbers in arithmetic sequence as a, a + d, a + 2d, and a + 3d. Then, the geometric sequence is a, a + d 3, a + 2d, and a + 3d + 12. Therefore,

Similarly, ——— = ——

Therefore, a = d + 9.

Substituting this last equation into (1) and simplifying,

$$d = 15, d = 3.$$

If d = 15, a = 24, and the arithmetic sequence is 24, 39, 54, 69 If d = 3, a = 6, and the arithmetic sequence is 6, 3, 0, 3.

A quick check shows that 24, 39, 54, 69 satisfies the conditions of the problem, with the corresponding geometric sequence being 24, 36, 54, 81.

However, 6, 3, 0, 3 does not work since 6, 0, 0, 9 is not a geometric sequence.

Therefore, the only arithmetic sequence is 24, 39, 54, 69.

<u>Method 2</u>: Represent the four numbers in arithmetic sequence as a, a + d, a + 2d, and a + 3d. Let the terms of the geometric sequence be represented by a, ar, . Then

(1)
$$ar = a + d$$
 3 and (2) $= a + 2d$ and (3) $a + 3d =$

From (1)
$$a(r \ 1) = d \ 3$$
. From (2) $a(\) = 2d$ $a(r \ 1)(r+1) = 2d$.

Therefore, $(d \ 3)(r+1) = 2d$ (4) r+1 = ---

From (3)
$$= 3d + 12$$
 $a(r + 1)() = 3(d + 4)$

Substituting (1) into this last equation and dividing by d 3, we obtain

From (4)
$$r =$$
 $=$ $=$ $=$ $=$

Therefore, $\overline{}$ = $\overline{}$ from which we eventually obtain d = 15. Thus, from (4),

r = - and from (1) a = 24. Therefore, the only such arithmetic sequence is 24, 39, 54, 69.

	Using the Law of Cosines	s on PBC,				
	25 =	$\cos P = \phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$				
	Substituting into (1) abov	ve,				
		 .				
	Carefully simplifying this last equation, we obtain					
	Factoring,	from which $x = -$ (impossible) an	d x = 20.			
	Finally, construct the altitude of PM of PBC and noting that M is the midpoint of BC, use the Pythagorean Theorem on PMB.					
	and PM =, or which is the desired dista	•				
4.	Assume that We first prove that <i>n</i> is not suppose that	for some positive integer a . ot a multiple of p . some integer k . Then	and, therefore,			
	Hence, p must divide a which means $-$ is an integer, and $-$.					
	Then, $k < - < k + 1$, which	Then, $k < - < k + 1$, which is impossible. Therefore, n is not a multiple of p .				
	Next, we prove that n and both n and $n +$	d n + p have no common prime factors. Sup	ppose a prime divides			

ш.

5. The desired ratio is -.

Method 1

Construct and . Represent the area of ABC as [ABC].

[AFE] = [AFD], since DF = FE, and AFE and AFD have the same altitude from point A. Similarly, [BFE] = [BFD].

Thus, [AEB] = 2[AFB],

[AFE] = 2[EFC], since AE = 2(EC) and AFE and EFC have the same altitude from point F. Similarly, [BFD] = 2[AFD] = 2[AFE] = 4[EFC].

Also, [ADE] = [AFD] + [AFE] = 4[EFC].

[AEB] = - [ABC], since AE = - AC and the triangles have the same altitude from point B.

Therefore,
$$[AEB] = 2[AFB] = -[ABC]$$
 $[AFB] = -[ABC]$

Also, [AFB] = [AFD] + [BFD] = [AFE] + [BFD]
=
$$2[EFC] + 2[AFD] = 2[EFC] + 4[EFC] = 6[EFC]$$
.

Therefore, [AFB] = -[ABC] = 6[EFC] [EFC] = -[ABC].

Finally, [BFC] = [ABC] [EFC] [ADE] [BFD]

$$= [ABC] - [ABC] - [ABC] - [ABC] = -[ABC].$$

Method 2

Construct perpendiculars from D, A, F, and E to A, and A, and A, and A, respectively.

The area of ABC = -

Since D is parallel to A , D B is similar to A B.

Therefore, — —

Method 3

Let EC = x, EA = 2x, AD = y, BD = 2y, and DF = EF = w.

Let ADE = and AED =.

Area ABC = -

Area AED = - = .

Area EFC = -

Area FDB = -

Using the Law of Sines on AED,